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I. Statement of the Problem

This report summarizes the results of a three-year research
program aimed at the development of a quantitative crack growth model
based on the microstructurally controlled factors responsible for the
"anomalous" behavior1 (i.e., unexpectedly rapid rates of growth) of small
fatigue cracks. The modeling effort required the experimental
characterization of yielding and crack opening/extension micromechanics
within a highly localized region adjacent to the crack tip. This work is
tedious and technically difficult, since "small" cracks usually range in
size from as small as 5 um, to no more than =200 im, in length, and the
relevant microstructural crack tip behavior occurs within a process zone
on the order of 5 -m in diameter.

Previous work2- 5 had suggested that linear elastic fracture
mechanics (LEFM) correlations of crack growth rate (da/dN) based on the
cyclic stress intensity factor (AK) might be inappropriate as a driving
force parameter for small cracks. This conclusion arose specifically from
crack tip measurements which showed6 ,7 that similitude (equivalent local
crack tip plastic flow field for same AK) was not preserved for large and

-' small fatigue cracks. The latter work demonstrated further that crack
closure (shielding) was only one, nondominant factor in the growth of
small cracks, and that the essence of the problem involved powerful
microstructural effects. Thus, the specific objective of the program was
to either discover a microstructurally-based alternative (to AK) crack
driving force, or determine an analytical approach by means of which to
introduce microstructural response directly into the LEFM driving force
expression.

II. Summary of Program

The experimental research effort has focussed on characterization
of the growth of small surface fatigue cracks in precipitation-hardened
aluminum alloys, since their behavior is representative of that observed
in many structural steels, titanium alloys, and nickel-base superalloys.
Specimens were cycled and observed within a unique servocontrolled,
hydraulic, in-situ SEM loading stage, permitting the determination of
crack tip opening displacements, local plastic strain, and crack opening
load/mode. 6 1 0  Selected area electron channeling was usedll, 2  to
determine the crystallographic orientation of grains containing
microcracks, relative to the crack plane and the load axis. Finally, the

.. very early stages of microcrack extension, in which the crack was immersed
within a single grain, were characterized by scanning electron and TEM
replica microscopy.12  These observations were combined to develop
physically valid microcrack growth models. 11- 13  Principal experimental
and theoretical results are summarized as follows (details are provided in
the refereed publication list in Section III):

Superscripts refer to References.

- -. -



2

1. Small fatigue cracks grow via the same microscopic extension
mechanisms characteristic of large cracks.

2. However, local crack tip strains, local crack tip openings,
(Figure 1) and average crack growth rates (Figure 2) for small
cracks exceed those for large cracks, when correlated using
SAK.

3. Local crack tip strains, local crack tip openings (Figure 3),
and average crack growth rates (Figure 4) for both large and
small cracks correlate with K* = (EAJ)1/ 2 , where AJ represents
the cyclic J integral computed experimentally about a path
inside the crack tip plastic zone, and E is the elastic
modu 1 us.

4. Unfortunately, this procedure, although providing both
tremendous insight into the physics of the small crack problem
and a valid driving force alternative to AK, is impractical
for lifetime prediction, since it requires information

* obtainable only within a specialized laboratory setting (an
SEM load-cycling stage).

5. When small cracks grow at rapid rates, their plastic zones lie
within the bounds of individual grains, and the crack front
interacts with relatively few (<lO) grains.

6. Thus, small and large cracks grow according to the same
physical mechanism, but small ones grow within a metallurgical
environment which resembles a single crystal.

7. By writing the stress intensity factor in terms of the
Dugdale-Barenblatt formalism, it is possible to introduce into
AK the local (single crystal) yield stress superimposed upon
the average (polycrystalline) yield stress.

8. The resulting model, predicated on the notion of
orientation-dependent microplastic grains, predicts
quantitatively the entire range (Figure 5: arrest,
retardation, "anomalous" rapid growth) of small fatigue crack
behavior.

9. The model agrees with experimental data (Figure 6).

1 10. For the model to be valid, however, it requires that small
cracks initiate within grains in which the Schmid factor
approaches its maximum possible value (0.5).

11. Selected area electron diffraction experiments prove (Table I)
that this is indeed the case.
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,@Figure 2. Small fatigue cracks in 7075 aluminum alloy tend to grow

~significantly faster than do large cracks at equivalent
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Figure 5. Predicted crack growth curves for small cracks
propagating from a microplastic grain into
elastic-plastic, contiguous grains; Ao is
defined as the ratio of the local resolved
shear strength to the macroscopic poly-
crystalline yield strength.
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TABLE I

CRYSTALLOGRAPHIC INFLUENCE IN THE
NUCLEATION AND GROWTH OF SURFACE

MICROCRACKS IN 7075-T651 Al

. CRACK GRAIN SCHMID FACTOR

I (fatal) A 0.489

2 A 0.489

3 A 0.489

4 B 0.482

5 C 0.437
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12. The results indicate that for conservative lifetime prediction
purposes, small crack behavior should be considered on a worst
case basis, i.e., fastest possible growth within favorably
oriented contiguous grains. Large crack data, especially
threshold concepts, are invalid for small cracks, and can
introduce large lifetime errors which increase dramatically as
the initial size of a microcrack decreases (Figure 7).
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VI. List of Illustrations

Figure 1. Comparison of crack tip opening displacements for
large and small fatigue cracks in overaged 7075
aluminum alloy.

Figure 2. Small fatigue cracks in 7075 aluminum alloy tend to
grow significantly faster than do large cracks at
equivalent AK, and below the large crack threshold.

Figure 3. Correlation of crack tip openini dis placements for
large and small cracks using K [AK = (EAJa)1/2 ]

evaluated based on the average value of the local AJ
integral, AJa, within the cyclic plastic zone.

Figure 4. Correlation of crack growth rates of small and large
cracks using AK* evaluated based on the average local
,J-integral, A Ja, or the crack tip opening

*displacement, 6.

Figure 5. Predicted crack growth curves for small cracks
propagating from a microplastic grain into
elastic-plastic, contiguous grains; Ao is defined as
the ratio of the local resolved shear strength to the
macroscopic polycrystalline yield strength.

Figure 6. Comparison of calculated and experimental crack
growth rates for small cracks in overaged 7075 Al.

Figure 7. Influence of initial surface crack length on the
predicted cyclic life of an Astroloy turbine disc
based on large, versus small, crack growth kinetics.
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